<nav id="a8soo"><td id="a8soo"></td></nav><optgroup id="a8soo"><rt id="a8soo"></rt></optgroup>
  • <tbody id="a8soo"><source id="a8soo"></source></tbody>
  • 資訊中心

    當前位置:首頁 > 資訊中心 > 

    3D打印耗材的分類

    發布時間:2020-01-10 09:40 來源: 點擊: 【字體: 】【打印此文】【關閉窗口

    3D 打印耗材材料是3D 打印技術重要的物質基礎,它的性能在很大程度上決定了成形零件的綜合性能。發展至今,其耗材材料種類已經十分豐富,下面小編來介紹一下3D打印耗材的分類,3D打印耗材主要可分為聚合物材料、金屬材料、陶瓷材料等三大類。

    一、 3D 打印用聚合物材料(塑料材料)

    3D打印用聚合物材料主要包括光敏樹脂、熱塑性塑料及水凝膠等。光敏樹脂是最早應用于3D打印的材料之一,適用于光固化成形(Stereolithography Apparatus,SLA),主要成分是能發生聚合反應的小分子樹脂(預聚體、單體),其中添加有光引發劑、阻聚劑、流平劑等助劑,能夠在特定的光照(一般為紫外光)下發生聚合反應實現固化。光敏樹脂并不算一種新的材料,與其原理類似的光刻膠、光固化涂料、光固化油墨等已經在電子制造、全息影像、膠粘劑、印刷、醫療等領域得到廣泛應用。在涂料領域,光固化技術因具有固化速度快、固化性能優異、少污染、節能等優點被認為是一種環境友好的綠色技術。但應用于3D打印的樹脂固化厚度(一般>25 μm)明顯大于傳統涂料的涂布厚度(一般<20 μm),其在配方組成上與傳統的光固化涂料、油墨等有所區別。


    3D 打印用聚合物材料(塑料材料).png


    3D打印用光敏樹脂主要采用的是自由基聚合的丙烯酸酯體系。商業化的丙烯酸酯有多種類型,需要根據不同的需求對配方進行調整??傮w而言,3D 打印用的光敏樹脂有以下幾點要求:

    (1)固化前性能穩定,一般要求可見光照射下不發生固化;

    (2)反應速度快,更高的反應速率可以實現高效率成形;

    (3)粘度適中,以匹配光固化成形裝備的再涂層要求;

    (4)固化收縮小,以減少成形時的變形及內應力;

    (5)固化后具有足夠的機械強度和化學穩定性;

    (6)毒性及刺激性小,以減少對環境及人體的傷害。

    熱塑性聚合物是最常見的3D 打印材料之一,常見的3D打印用熱塑性聚合物有丙烯腈-丁二烯- 苯乙烯塑料(ABS)、聚乳酸(PLA)、尼龍(PA)、聚碳酸酯(PC)、聚苯乙烯(PS)、聚己內酯(PCL)、聚苯砜(PPSF)、熱塑性聚氨酯(TPU)、聚醚醚酮(PEEK)等。

    根據3D 打印方法的不同,要求材料的形態也有所不同。熔融沉積成形(Fused Deposition Modeling,FDM)使用的是絲材,激光選區燒結(Selective Laser Sintering,SLS)則使用的是粉材。由于工業上常用的聚合物原料大多以顆粒為主,制成絲材或粉材都要進行二次加工,提高了3D打印耗材的使用成本,目前也有一些單位開始研發以顆粒為原料的3D打印裝備。下面對幾種有代表性的材料進行介紹。

    PLA 和ABS 是FDM 最常用的耗材,因價格便宜而十分普及。ABS 是常見的工程塑料,具有較好的機械性能,但3D 打印條件要求苛刻,在打印過程中容易產生翹曲變形,且易產生刺激性氣味。PLA 是可降解的環保塑料,打印性能較好,是一種較為理想的3D 打印熱塑性聚合物,已廣泛應用于教育、醫療、建筑、模具設計等行業。此外,PLA 還具有良好的生物相容性,加入羥基磷灰石改性的PLA可用于組織工程支架的制造。

    PA是一種半晶態聚合物,經SLS成形后能得到高致密度且高強度的零件,是SLS 的主要耗材之一。SLS中所使用的PA需具有較高的球形度及粒徑均勻性,通常采用低溫粉碎法制備得到。通過加入玻璃微珠、粘土、鋁粉、碳纖維等無機材料可制備出PA復合粉末,這些無機填料的加入能顯著提高某些方面的性能,如強度、耐熱性能、導電性等,以滿足不同領域的應用需求。

    PCL 是一種無毒、低熔點的熱塑性塑料,PCL絲材主要作為兒童使用的3D打印筆的耗材,因成形溫度較低(80~100°C)而有較高的安全性。值得一提的是,PCL具有優異的生物相容性和降解性,可以作為生物醫療中組織工程支架的材料,通過摻雜納米羥基磷灰石等材料還能夠改善力學性能及生物相容性。此外PCL 材料還具有一定的形狀記憶效應,在3D打印方面有一定的潛力。

    TPU 是一種具有良好彈性的熱塑性聚合物,其硬度范圍寬且可調,有一定的耐磨性、耐油性,適用于鞋材、個人消費品、工業零件等的制造。結合3D打印技術可以制造出傳統成形工藝難以制造的復雜多孔結構,使得制件擁有獨特且可調控的力學性能。采用SLS 工藝打印的多孔結構TPU鞋墊的彈性性能和使用強度已達到市場使用標準。

    PEEK 是一種半晶態聚合物,具有高熔點(343°C)和優異的力學性能,生物相容性也十分出色, 是目前研究較熱的3D 打印材料。純PEEK 的楊氏模量為3.86±0.72 GPa,經碳纖維增強后可達21.1±2.3 GPa,與人骨的楊氏模量最為接近,可以有效避免植入人體后與人骨產生的應力遮擋以及松動現象,是一種理想的骨科植入物材料。采用3D 打印技術制造的PEEK 植入體能夠很好地滿足不同患者不同病情的個性化植入物定制需求,目前國內3D打印PEEK植入物已經在臨床上取得了較好的效果。

    二、3D 打印用金屬材料

    3D 打印金屬材料主要有粉末形式和絲材形式。粉末材料是最常用的材料,可用于激光選區熔化(Selective Laser Melting,SLM)、激光近凈成形(Laser Engineered Net Shaping,LENS)、電子束選區熔化(Electron Beam Melting,EBM)等多種3D打印工藝;絲材則適合于電弧增材制造(Wire and Arc Additive Manufacture,WAAM)等工藝。


    3D 打印用金屬材料.png


    為了滿足3D 打印的工藝需求,金屬粉末必須滿足一定的要求。粉末的流動性是粉末的重要特性之一,所有使用金屬粉末作為耗材的3D打印工藝在制造過程中均涉及粉末的流動,金屬粉末的流動性直接影響到SLM、EBM 中的鋪粉均勻性和LENS 中的送粉穩定性,若流動性太差會造成打印精度降低甚至打印失敗。

    3D 打印所使用的金屬絲材與傳統的焊絲相同,理論上凡能在工藝條件下熔化的金屬都可作為3D 打印的材料。絲材制造的工藝很成熟,材料成本相比粉材要低很多。

    按照材料種類劃分,3D打印金屬材料可以分為鐵基合金、鈦及鈦基合金、鎳基合金、鈷鉻合金、鋁合金、銅合金及貴金屬等。

    鐵基合金是3D 打印金屬材料中研究較早、較深入的一類合金,較常用的鐵基合金有工具鋼、316L 不銹鋼、M2 高速鋼、H13 模具鋼和15-5PH 馬氏體時效鋼等。鐵基合金使用成本較低、硬度高、韌性好,同時具有良好的機械加工性,特別適合于模具制造。3D打印隨形水道模具是鐵基合金的一大應用,傳統工藝異形水道難以加工,而3D打印可以控制冷卻流道的布置與型腔的幾何形狀基本一致,能提升溫度場的均勻性,有效降低產品缺陷并提高模具壽命。

    鈦及鈦合金以其顯著的比強度高、耐熱性好、耐腐蝕、生物相容性好等特點,成為醫療器械、化工設備、航空航天及運動器材等領域的理想材料。然而鈦合金屬于典型的難加工材料,加工時應力大、溫度高,刀具磨損嚴重,限制了鈦合金的廣泛應用。而3D打印技術特別適合鈦及鈦合金的制造,一是3D打印時處于保護氣氛環境中,鈦不易與氧、氮等元素發生反應,微區局部的快速加熱冷卻也限制了合金元素的揮發;二是無需切削加工便能制造復雜的形狀,且基于粉材或絲材材料利用率高,不會造成原材料的浪費,大大降低了制造成本。目前3D打印鈦及鈦合金的種類有純Ti、Ti6A14V(TC4)和Ti6A17Nb,可廣泛應用于航空航天零件及人工植入體(如骨骼,牙齒等)。

    鎳基合金是一類發展最快、應用最廣的高溫合金,其在650~1000°C 高溫下有較高的強度和一定的抗氧化腐蝕能力,廣泛用于航空航天、石油化工、船舶、能源等領域。例如,鎳基高溫合金可以用在航空發動機的渦輪葉片與渦輪盤。常用的3D打印鎳基合金牌號有Inconel 625、Inconel718及Inconel 939等。

    鈷基合金也可作為高溫合金使用,但因資源缺乏,發展受限。由于鈷基合金具有比鈦合金更良好的生物相容性,目前多作為醫用材料使用,用于牙科植入體和骨科植入體的制造。目前常用的3D 打印鈷基合金牌號有Co 212、Co 452、Co 502和CoCr28Mo6等。

    鋁合金密度低,耐腐蝕性能好,抗疲勞性能較高, 且具有較高的比強度、比剛度, 是一類理想的輕量化材料。3D 打印中使用的鋁合金為鑄造鋁合金, 常用牌號有AlSi10Mg、AlSi7Mg、AlSi9Cu3 等。韓國通信衛星Koreasat-5A及Koreasat-7 使用了SLM制造的AlSi7Mg輕量化部件,不僅由原來的多個零件合成一個整體制造,零件重量比原設計降低22%,制造成本降低30%,生產周期縮短1—2個月。

    其他金屬材料如銅合金、鎂合金、貴金屬等需求量不及以上介紹的幾種金屬材料,但也有其相應的應用前景。

    三、3D 打印用陶瓷材料

    傳統陶瓷可以定義為組成硅酸鹽工業的那些陶瓷制品,主要包括粘土、水泥及硅酸鹽玻璃等。傳統陶瓷的原料多為天然的礦物原料,分布廣泛且價格低廉,適合于日用陶瓷、衛生陶瓷、耐火材料、磨料、建筑材料等的制造。傳統陶瓷的成形大多需要模具,將3D打印工藝應用于陶瓷或玻璃制品的制造中,可以實現陶瓷制品的定制化,提高附加值,并有可能賦予其獨特的藝術價值。


    3D 打印用陶瓷材料.png


    先進陶瓷是一類采用高純度原料、可以人為調控化學配比和組織結構的高性能陶瓷,相比傳統陶瓷在力學性能上有顯著提高并具有傳統陶瓷不具備的各種聲、光、熱、電、磁功能。先進陶瓷從用途上可分為結構陶瓷和功能陶瓷。結構陶瓷常用來制造結構零部件,要求有較高的硬度、韌性、耐磨性和耐高溫性能;功能陶瓷則用來制造功能器件,如壓電陶瓷、介電陶瓷、鐵電陶瓷、敏感陶瓷、生物陶瓷等。從化學成分上先進陶瓷可以分為氧化物陶瓷和非氧化物陶瓷等。為了獲得更高性能的陶瓷,不僅需要對其成分進行優化改良,也對制造工藝提出了更高的要求。成形作為陶瓷制造中重要的一環,3D打印先進陶瓷也受到了越來越多研究者的關注。

    氧化物陶瓷物理化學性能穩定,燒結工藝比較簡單,是陶瓷3D打印研究最多的材料。適用氧化物陶瓷的3D 打印工藝種類也最多,3DP、SLS、FDM、DIW、SLA、SLM、LENS 等工藝均可用于氧化物陶瓷的成形。

    基于粉體的3DP和SLS 利用液態或低熔點有機粘結劑進行成形,由于得到素坯致密度較低,在燒結過程中難以實現完全的致密化,多用于成形多孔陶瓷;SLS 與等靜壓技術結合的工藝和基于漿料的SLS 工藝都可有效提高了素坯的致密度,實現致密氧化物陶瓷的制造。

    FDM的耗材是陶瓷粉體與熱塑性高分子混合制得的絲材,一般固含量在50 vol%以上,但因制絲成本高、制件精度低等原因,FDM工藝很少使用。


    3D打印耗材設備.jpg


    三奧科技一直專注于精密擠出機械行業,集開發、設計、制造、銷售一體的專業擠出設備和工藝研發的制造生產3D打印耗材設備廠家。三奧科技研發生產的3D打印耗材設備技術一流,設備擠出穩定,性能可靠,操作方便,開機調試耗時短,線徑精度高,生產速度可達80-100m/min,效率高,穩定性好,運行信息在線顯示,緊急停機保護,安全可靠,在線整齊收卷,制品美觀大方,期待能為您提供服務。





    上一篇:詳解3D打印制造模具的五大優點
    下一篇:常用的3D打印機耗材-PLA -三奧科技


    哈尔滨按摩